cKBET: assessing goodness of batch effect correction for single-cell RNA-seq

Por um escritor misterioso
Last updated 24 março 2025
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
lt;p>Single-cell RNA sequencing reveals the gene structure and gene expression status of a single cell, which can reflect the heterogeneity between cells. However, batch effects caused by non-biological factors may hinder data integration and downstream analysis. Although the batch effect can be evaluated by visualizing the data, which actually is subjective and inaccurate. In this work, we propose a quantitative method cKBET, which considers the batch and cell type information simultaneously. The cKBET method accesses batch effects by comparing the global and local fraction of cells of different batches in different cell types. We verify the performance of our cKBET method on simulated and real biological data sets. The experimental results show that our cKBET method is superior to existing methods in most cases. In general, our cKBET method can detect batch effect with either balanced or unbalanced cell types, and thus evaluate batch correction methods.</p>
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Batch effects and the effective design of single-cell gene expression studies
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Assessment of batch-correction methods for scRNA-seq data with a new test metric
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Batch effects and the effective design of single-cell gene expression studies
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
A test metric for assessing single-cell RNA-seq batch correction
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
PDF) A geometrical approach based on PCA to benchmark the algorithms of batch effect correction applied to the integration of RNA-Seq data
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
PDF) BEENE: Deep Learning based Nonlinear Embedding Improves Batch Effect Estimation
cKBET: assessing goodness of batch effect correction for single-cell RNA-seq
How to Batch Correct Single Cell. Comparing batch correction methods for…, by Nikolay Oskolkov

© 2014-2025 startwindsor.com. All rights reserved.