Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus

Por um escritor misterioso
Last updated 25 março 2025
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neurexins: molecular codes for shaping neuronal synapses
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Frontiers High-Resolution Fluorescence Imaging Combined With Computer Simulations to Quantitate Surface Dynamics and Nanoscale Organization of Neuroligin-1 at Synapses
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Frontiers Deletion of β-Neurexins in Mice Alters the Distribution of Dense-Core Vesicles in Presynapses of Hippocampal and Cerebellar Neurons
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neuroligins and neurexins link synaptic function to cognitive disease
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neuroligins and neurexins link synaptic function to cognitive disease. - Abstract - Europe PMC
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neuroligin - Wikipedia
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling - ScienceDirect
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Synaptic Neurexin Complexes: A Molecular Code for the Logic of Neural Circuits. - Abstract - Europe PMC
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Synapse organizers as molecular codes for synaptic plasticity: Trends in Neurosciences
Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and  essential for excitatory synapse nanoscale organization in the hippocampus
Frontiers The Decade of Super-Resolution Microscopy of the Presynapse

© 2014-2025 startwindsor.com. All rights reserved.