Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and Temperature-Controlled Aging Treatment

Por um escritor misterioso
Last updated 24 março 2025
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Effect of spatial period on surface wettability and stability of
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Femtosecond laser-induced periodic oxidization of titanium film
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Schematic diagram shows the formation mechanism of the TiO2/SiO2
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Effect of side length on wettability and stability of the wetting
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wettability and Stability of Wetting States for the Surfaces with
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
a) Comparison of experimental results and theoretical predictions
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Demonstration of an Enhanced “Interconnect Topology”-Based
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wettability properties of the plane surface of graphite rod. a
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
a Contact angle measurement between the liquid and the non-ablated
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
SEM images of the SiO2/TiO2 core–shell nanoparticles a sample 1, b
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wettability and Stability of Wetting States for the Surfaces with
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Bionic eco-friendly synergic anti-scaling Cu-Zn-CeO2 coating on
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Wrinkled, Dual-Scale Structures of Diamond-Like Carbon (DLC) for
Demonstration of an Enhanced “Interconnect Topology”-Based Superhydrophobic  Surface on 2024 Aluminum Alloy by Femtosecond Laser Ablation and  Temperature-Controlled Aging Treatment
Short and long term surface chemistry and wetting behaviour of

© 2014-2025 startwindsor.com. All rights reserved.