Efficient and Accurate Candidate Generation for Grasp Pose
Por um escritor misterioso
Last updated 21 março 2025

Recently, a number of grasp detection methods have been proposed that can be used to localize robotic grasp configurations directly from sensor data without estimating object pose. The underlying idea is to treat grasp perception analogously to object detection in computer vision. These methods take as input a noisy and partially occluded RGBD image or point cloud and produce as output pose estimates of viable grasps, without assuming a known CAD model of the object. Although these methods generalize grasp knowledge to new objects well, they have not yet been demonstrated to be reliable enough for wide use. Many grasp detection methods achieve grasp success rates (grasp successes as a fraction of the total number of grasp attempts) between 75% and 95% for novel objects presented in isolation or in light clutter. Not only are these success rates too low for practical grasping applications, but the light clutter scenarios that are evaluated often do not reflect the realities of real world grasping. This paper proposes a number of innovations that together result in a significant improvement in grasp detection performance. The specific improvement in performance due to each of our contributions is quantitatively measured either in simulation or on robotic hardware. Ultimately, we report a series of robotic experiments that average a 93% end-to-end grasp success rate for novel objects presented in dense clutter.

Grasp Pose Detection in Point Clouds - Andreas ten Pas, Marcus

PDF] Efficient and Accurate Candidate Generation for Grasp Pose

PDF) Efficient and Accurate Candidate Generation for Grasp Pose

Grasp detection via visual rotation object detection and point

GlassLoc: Plenoptic Grasp Pose Detection in Transparent Clutter

Full article: A model-free 6-DOF grasp detection method based on

PDF] Efficient and Accurate Candidate Generation for Grasp Pose

PDF] Efficient and Accurate Candidate Generation for Grasp Pose

Frontiers Robotics Dexterous Grasping: The Methods Based on

PDF] Efficient and Accurate Candidate Generation for Grasp Pose

PEGG-Net: Background Agnostic Pixel-Wise Efficient Grasp

Actuators, Free Full-Text

6-DoF grasp pose estimation based on instance reconstruction

Robotics, Free Full-Text
Recomendado para você
-
Candidate-SE - Secretaria Nacional de Organização do PT21 março 2025
-
Se Candidate, Mulher!21 março 2025
-
Cuidar +” : Palmela tem teleassistência 24h/dia e 365 dias/ano21 março 2025
-
Vivek Ramaswamy continues S.E Iowa campaign blitz with Bloomfield21 março 2025
-
Banco Millennium Atlantico - Candidate-se21 março 2025
-
Oportunidade: Candidate-se às bolsas da China para 2020!21 março 2025
-
Candidate-se à Época Alta no Vau - Cofre de Previdência21 março 2025
-
Vamos nos inscrever para 10 empregos》Candidate-se bastante e21 março 2025
-
Arquitetura e Engenharia: Candidate-se em vagas da semana de21 março 2025
-
Não perca tempo e candidate-se já na vaga de Mecânico Montador! Saiba mais acessando o nosso portal! #jobartis #emprego #angola…21 março 2025
você pode gostar
-
18'H Monster Truck Combo by Cutting Edge21 março 2025
-
Telltale on X: '@Minecraft: #StoryMode' is TEN CENTS for a limited-time via Android's @GooglePlay Store! / X21 março 2025
-
60 Dias Apaixonado PDF21 março 2025
-
Crazy Game synonyms - 48 Words and Phrases for Crazy Game21 março 2025
-
Como chegar no Xeque mate? Não deixe o rei fugir! - SleepRerun #0621 março 2025
-
Achievements in 05:26.700 by AntBlueR - Pou - Speedrun21 março 2025
-
PDF] Live Lesson: Netsim: Network simulation and hacking for high21 março 2025
-
Call of the Night Episode 2 Recap and Ending, Explained: Who is21 março 2025
-
TOP 10 SCORES NATIONWIDE!!! ☀️☀️☀️ #ShinewithRadiance #RadianceAllStars #JPAC #allstarcheer #allstarcheerleading #tumbling #indiana…21 março 2025
-
Rainy Days|Alf Wardhana_哔哩哔哩_bilibili21 março 2025