Biosensors, Free Full-Text

Por um escritor misterioso
Last updated 12 janeiro 2025
Biosensors, Free Full-Text
Liver fibrosis is a key pathological precondition for hepatocellular carcinoma in which the severity is confidently correlated with liver cancer. Liver fibrosis, characterized by gradual cell loss and excessive extracellular matrix deposition, can be reverted if detected at the early stage. The gold standard for staging and diagnosis of liver fibrosis is undoubtedly biopsy. However, this technique needs careful sample preparation and expert analysis. In the present work, an ex vivo, minimally destructive, label-free characterization of liver biopsies is presented. Through a custom-made experimental setup, liver biopsies of bile-duct-ligated and sham-operated mice were measured at 8, 15, and 21 days after the procedure. Changes in impedance were observed with the progression of fibrosis, and through data fitting, tissue biopsies were approximated to an equivalent RC circuit model. The model was validated by means of 3D hepatic cell culture measurement, in which the capacitive part of impedance was proportionally associated with cell number and the resistive one was proportionally associated with the extracellular matrix. While the sham-operated samples presented a decrease in resistance with time, the bile-duct-ligated ones exhibited an increase in this parameter with the evolution of fibrosis. Moreover, since the largest difference in resistance between healthy and fibrotic tissue, of around 2 kΩ, was found at 8 days, this method presents great potential for the study of fibrotic tissue at early stages. Our data point out the great potential of exploiting the proposed needle setup in clinical applications.
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Development of a Cell-Free Optical Biosensor for Detection of a Broad Range of Mercury Contaminants in Water: A Plasmid DNA-Based Approach
Biosensors, Free Full-Text
RPA biosensors for rapid zoonoses screening
Biosensors, Free Full-Text
How Nanophotonic Label-Free Biosensors Can Contribute to Rapid and Massive Diagnostics of Respiratory Virus Infections: COVID-19 Case
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Schematics of a label-free biosensor.
Biosensors, Free Full-Text
Label-free optical biosensors for food and biological sensor applications - ScienceDirect
Biosensors, Free Full-Text
Cell-free biosensors for biomedical applications - ScienceDirect
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications - Zhang - 2020 - Biotechnology Journal - Wiley Online Library
Biosensors, Free Full-Text
Whole cell-based microbial sensors vs cell-free biosensors. Microbial
Biosensors, Free Full-Text
Biosensors, Free Full-Text

© 2014-2025 startwindsor.com. All rights reserved.